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LOCAL STABILITY OF SANDWICH SHELLS OF REVOIUTION 

E.I.Grigolyuk and P.P.Chulkov 
(Novosibirsk) 

A mathematical treatment i s  given of t h e  l i nea r i zed  s t a b i l i t y  . 	 of sandwich s h e l l s  of revolution, with asymmetric s t r u c t u r e  
and a r i g i d  core under compound stress. S t a b i l i t y  and mechani
c a l  s t rength  formulas are derived f o r  t h e  shear  exerted by t h e  
core on t h e  load-carrying faces, f o r  free and,clamped ends of 
s h e l l s  of conical,  cy l indr ica l ,  and spher ica l  shape. 

Fatensive l i t e r a t u r e  i s  devoted t o  t h e  s t a b i l i t y  of sandwich s h e l l s ;  in
s tances  of t h e  symmetric s t r u c t u r e  of s h e l l  thickness  i n  s h e l l s  with a l i gh t 
weight core have been been inves t iga ted  i n  considerable d e t a i l .  

The discussion of these  s tud ie s  i s  a separate  t a sk  i n  i t s e l f .  Below are 
presented, on t h e  bas i s  of t h e  equations derived elsewhere (Bibl . l ) ,  t h e  r e s u l t s  
of a study of t h e  l i nea r i zed  s t a b i l i t y  of  sandwich s h e l l s  with asymmetric s t ruc
t u r e  and a r i g i d  core ( s h e l l  of revolut ion,  spherical ,  cy l ind r i ca l ,  and conical  
s h e l l s )  under compound stress. Def in i te  results (Bibl.2, 3 )  are obtained on t h e  
bas i s  of a spec i f i c  case. 

1. Fundamental Equations 

A s  shown before (Bibl . l ) ,  t h e  equations of t h e  f in i te  buckling of cambered 
e l a s t i c  t h i n  sandwich s h e l l s ,  with a n  asymmetric s t ruc tu re  containing a r i g i d  
t r ansve r sa l ly  i s o t r o p i c  core enclosed between i so t rop ic  load-carrying faces  may 
be wr i t t en  with respect  t o  t h e  fo rce  func t ion  F and displacement funct ion ?,.W e  
reproduce the  system of these  equations,  complemented by terms taking i n t o  ac
count t h e  i n i t i a l  i r r e g u l a r i t i e s ,  on t h e  assumption t h a t  t h e  tangent ia l  surface 
loads have t h e  p o t e n t i a l  I 

The equations of t h e  l o c a l  s tabi l i ty  of  e las t ic  t h i n  sandwich s h e l l s  are 

35 Numbers i n  t h e  margin ind ica t e  paginat ion i n  t h e  o r i g i n a l  fore ign  text.  



V2V21' = Eh Vl'(1 - h2p-'V2)X (1.3)
D (1 -9h2p-'V2) V2V2x + VI2F -

Henceforth, expressions f o r  t h e  displacement components and s p e c i f i c  mo
ments W i l l  be needed t o  s a t i s f y  t h e  boundary conditions. 

The absolute shear of t h e  boundary sur faces  of t h e ' c o r e  i s  

The t o t a l  moment of normal fo rces  of t h e  load -ca rv ing  layers w i t h  respect 
t o  t h e  center  sur face  of t h e  core as w e l l  as t h e  moment of t h e  core a r e  L2a 

The sum t o t a l  of t h e  i n t r i n s i c  moments of t h e  load-carrying l aye r s  i s  ex
pressed as 

The adjusted modidus of e l a s t i c i t y  E, c y l i n d r i c a l  r i g i d i t y  D,  and shear 
coe f f i c i en t  6 will be,determined by means of t h e  r i g i d i t y  c h a r a c t e r i s t i c s  and 
thicknesses of t h e  load-carrying f aces  and t h e  core. Let El, E a ,  I& be t h e  
moduli of e l a s t i c i t y  of t h e  first kind of t h e  load-carrying f aces  and t h e  core, 
respectively; l e t  v , ,  v , ,  v3 be t h e  Poisson r a t i o s  of t h e  materials of t h e  L 

load-carrying f aces  and t h e  core; and l e t  h,, h2, h3 be t h e  thicknesses of t he  
load-carrying f aces  and t h e  core. Let us then introduce t h e  dimensionless 
r i g i d i t y  c h a r a c t e r i s t i c s  and dimensionless thicknesses of t h e  load-carrying 
f aces  and t h e  core 
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A s  implied by eq.(1.6), 

Yl + Yz + Y3 = 1, t 1 + t z + t 3 =  1 (1.7) 

The adjusted Poisson r a t i o  then becomes 

v = YIVI + y z v 2  + Y3V3 . (1.8) 

The adjusted modulus of e l a s t i c i t y  of t h e  first kind will be determined 
from t h e  formula. 

The c y l i n d r i c a l  r i g i d i t y  D and t h e  shear coe f f i c i en t  B have t h e  form of 

(1.10) 


Here, G i s  t h e  shear modulus of t h e  core material, while 

To determine t h e  limits of va r i a t ion  i n  t h e  coe f f i c i en t s ,  it i s  s u f f i c i e n t  
t o  consider t h e  case of a s h e l l  of symmetric s t ru-c ture  with a lightweight core. 

For y1 = y2 = 1/2, y3 = 0, tl = t a  = t e q * ( l . l l )  y i e l d s  /so 

Hence, considering t h a t  0 t 1/2, 0 < t 3  < 1, we have 

A s  can be seen from t h i s  l as t  estimate, 9 i s  s u f f i c i e n t l y  s m a l l ,  e.g., for 
t3 = 0.6 and t = 0.2 we have 9 = 0.02 which value decreases s t i l l  f u r t h e r  with 
increasing t3 and y3. The coefficientk?/B charac te r izes  t h e  e f f e c t  of t h e  shear 
of t h e  core on t h e  i n t r i n s i c  moments of t h e  load-carlying faces;  t h i s  e f f e c t  
may be disregarded f o r  c e r t a i n  problems of s t a b i l i t y  and strength.  

The boundaqy conditions f o r  t h e  functions F, x (xl =xy) Will be as fol
lows  
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A t  t h e  freely supported end ( N l l  = e2 = w = Hll = K,, = a2 = 0): 

p = v2p = x = v=x= v2v2x =0 . 0.w 
A t  t h e  clamped end (Nll = e2 = w = ;sw/ax = a, = H12 = 0 ) :  

A t  t h e  end with clamped load-carrying faces,  i n  t h e  absence of connections 
t h a t  would prevent t h e i r  relative shear ( N l l  =' e2 = 0, w = aw/ax = Hll = 0 ) :  

I 

A t  t h e  end free of such connections ( N l l  = 0, N,, = 0, H,, = MI1 = 0;
Q sum = 0 )  

Note t h a t  conditions N1:, N I Z ,  N& a r e  considered as applied over t h e  dis
tance e, = 1/2h(Bltl + yl& - y2t2  - y 2 t s )  from t h e  center  surface of t h e  core. 

By introducing t h e  so lu t ion  function xi from t h e  formulas 

t h e  system of equations (103)~(1.h) can be reduced t o  a s i n g l e  s t a b i l i t y  equa
t i o n  

The above system.of equations (1.3), ( l o b ) ,  as well as eq.(1.19), were  de
r ived  on t h e  assumption t h a t  t h e  angles of r o t a t i o n  of t h e  normal and i n i t i a l  ? 

sur face  of t h e  core may be expressed as p a r t i a l  de r iva t ives  of some function. 
The boundary conditions examined below correspond t o  t h i s  assumption. 

2. S h e l l  of Revolution /81 
Consider a l o c a l  s t a b i l i t y  loss i n  a s h e l l  of revolu t ion  siipported on both 

sides.  Assume t h a t  t h e  s h e l l  i s  subjec t  t o  an ex te rna l  normal pressure  q, an 
d a l  compressive fo rce  N, and a torque Mt i n  t h e  p lane  of a p a r a l l e l  c i r c l e ;  



under t h e  ac t ion  of these  loads, t h e  s p e c i f i c  s t r e s s e s  

il Will arise i n  t h e  s u b c r i t i c a l  momentless state. 

. Here, ro i s  t h e  rad ius  of t h e  p a r a l l e l  c i r c l e  and CY i s  t h e  angle between 
t h e  a x i s  and t h e  normal t o  t h e  i n i t i a l  surface. 

Then t h e  problem reduces t o  t h e  so lu t ion  of t h e  s t a b i l i t y  equation 

wi th  t h e  boundary conditions ( f o r  x = 0 and x = 4) of f r e e  support 

lrle seek t h e  so lu t ion  of eq.(2.3) i n  t h e  form 

Here, m i s  t h e  number of  half-waves along t h e  gene ra t r ix  of t h e  s h e l l ;  n 
i s  t h e  number of waves along t h e  perimeter; Tis t he  parameter charac te r iz ing  
t h e  i n c l i n a t i o n  o f  h e l i c a l  loops due t o  t h e  ac t ion  of t h e  torque; and a, b are 
constants. 

Introducing eq. (2.5) i n t o  eq. (2.3), we obta in  

-m)n [ ~ ~ ) ( n ,  - ~ I ( I Z ,m ) ]cos ( n r n . l : / I )COS [ n ( y  -qx) /&I + 
+ f ~ [ $ ( o ~ , - - m )  +$ (n ,n7) ] s in  ( m m / I )s i n  [ n ( u - q q )  /R2]+ 

+b[$(r i ,  m) - j ) ( n ,  - m ) ]  sin (rr tns/I)cos [ n ( y - q z )  /Xz]+ 
+ b [ $ ( n ,  m )  + $(nl- m ) ]  cos ( J ~ J T . T /  1 )  sin [ n ( y  -qz)/&] =0 

where 
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The equa l i ty  (2.6) i s  poss ib l e  only  on condition t h a t  

Thus, we have two equations f o r  finding t h e  c r i t i c a l  combination of stresses 
pl, p8 , S. We Will now consider p a r t i c u l a r  problems. 

3. Cylindrical  S h e l l  /82 * 
a )  Uniform Axial Compression p, 

Assuming t h a t  Rl -+ m, Rz = R, T = pa = s = 0, we ob ta in  from eq.(2.7) t h e  
formula f o r  t h e  c r i t i c a l  compressive axial u n i t  s t r e s s  

wi th  (m/&)' I m, -= m, m, 5 m2 < co. According t o  eq.(3.1), p1 reaches i t s  
minimum a t  t h e  boundary of va r i a t ion  i n  t h e  va r i ab le s  ml, ma, determined by t h e  
equation m, = ma, s i nce  t h e  function ( 1  + vh29-'m1)/(1 + h2fF1ml) i s  monotonic. 
We seek t h e  m i n i m u m  of p1 on d i f f e r e n t i a t i n g  t h e  expression 

wi th  respect t o  m,. This l eads  t o  t h e  equation 

~ r n ~ ~ ( ~ + ~ - m , + - ~ - m , ~ ) - - - ( ~ + ~ - m ~ )26hP 	 Oh4 E h  hZ 2 = O  
P it' (3.4) 

This equation contains one s ign  r e v e r s a l  and thus has  one p o s i t i v e  root 
r e a l i z i n g  t h e  minimum of eq.(3.3). Considering t h a t  9 i s  a neg l ig ib l e  quantity,  
we determine ml by solving t h e  quadratic equation 

whose p o s i t i v e  root  W i l l  be 

while i t s  corresponding l e a s t  c r i t i c a l  u n i t  s t r e s s  w i l l  be 
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The limit of a p p l i c a b i l i t y  of eqs.(3.6), (3.7) i s  determined by t h e  in
equal i ty  

Hence, beyond t h e  limits of t h i s  inequal i ty ,  given t h e  minimization of ex
pression (3.3),
eq.(3.6) t he  parameter ml

* eq.(3.3) may be rewr i t ten  

> 

The condition dpl/dml 

s o  t h a t  t he  c r i t i c a l  u n i t  

allowance must be made for 9 ;  however, i n  accordance with 
i s  extremely l a r g e  i n  this case and h/Rp 2 1. Hence, 
as 

p i  =D $ k 2 (1+ uh2fi-'nri) +Eh(R2ml)-' . (3.9) 

= 0 y ie lds  

s t r e s s  d l l b e c o m e  

b) External Transverse Pressure q- _ _  

In  eq.(2,7), we pilt 

We have (Figs.1, 2; these  and the  following diagrams give the  minimal /R3
values of the  c r i t i c a l  load)  

c )  	External Omnilatera1 Pressure q 

I n  eq.(2.7), we put  

Me have (Figs  .3, 1,) 
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d) Torsion 

From eq.(2.7), at  

we der ive  two equations for determining s 
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For s h e l l s  with a smal l  parameter e, eq . (3 .a )  i s  s implif ied,  s ince  then 
it may be assumed t h a t  

e'~q--qifE ) Z  + 1 - 1 (3.15) 

Then, we f i n d  

e 

Adding and subt rac t ing  these  equations, we have 

Equation (3.17) makes it poss ib le  t o  f ind  from a given n (Figs.5 - 6). 

Fig. 5 

Fig. 6 
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e )  Eccentric Compression 

The pressure over t h e  perimeter of t h e  s h e l l  face, subjected t o  t h e  ac t ion  
of t h e  eccent r ic  axial fo rce  N, i s  found from t h e  formula 

p 1  =po (1 +2e cos ?),, pa =.-
N 

2nR ' 

where e i s  t h e  eccen t r i c i ty  of t h e  force.  

Introducing 

-m 

i n t o  eq. (2.3), we have /c35 

The equal i ty  (3.20) can be wr i t ten  as 

Since J.I ,  = O(n4) when n .-t 00, t h e  s e r i e s  (3.19) converges. Considering 
t h a t  $n = $-n, we have 

However, al/+ 1so t h a t  

Po 2 $ o /  ( 1  + 2 4  (3.24) 

For s u f f i c i e n t l y  l a rge  n 

10 


III 



- -  

Returning t o  k, we have an i n f i n i t e  continued f r a c t i o n  

QI E-= 
no E2($A -1)- ( 9 z A  -1) -... 

Now, on the  bas i s  of eq.(3.22), we obta in  the  i n f in i t e  continued f r a c t i o n  

which makes it poss ib le  t o  determine both A f o r  a given e and e f o r  a given A .  
Numerical ca lcu la t ions  show t h a t  when determining c f o r  a given A i n  f r ac t ions  
of q o ,  po it is  s u f f i c i e n t  t o  confine t h e  consideration t o  t h r e e  o r  four  terms 
of t h e  f r ac t ion  (3.27). Consideration of t h e  first four  terms leads  t o  a quad
r a t i c  equation with respect  t o  e2 and hence presents  no computational d i f f i cu l 
t ies.  Calculations performed over a s u f f i c i e n t l y  broad range of parameters 
show t h a t  po can be d e t e d . n e d  with high accuracy and always with a margin, by 
means of t h e  formula 

The same f inding was o r i g i n a l l y  obtained by Fluegge i n  examining an analogous 
problem f o r  homogeneous eccen t r i ca l ly  compressed cy l ind r i ca l  she l l s .  

f )  Effect  of Comgund S t r e s ses  /s6 
The c r i t i c a l  stresses i n  t h e  presence of compound axial stress, bending 

stress, and t ransverse pressure satisfy the  condition 

(3.29) 

where sox-%,po+, &++are, respect ively,  t he  parameters of t he  c r i t i c a l  uniform 
transverse ( o r  o d l a t e r a l )  pressure,  uniform axial pressure,  and tangent ia l  
boundary s t r e s s ,  with each stress ac t ing  separately;  q-:?, p3$, S,: are t h e  re
spect ive c r i t i c a l  values of these  parameters when t h e  s t r e s s e s  a r e  combined. 

g )  Oscilla_tions- and S t a b i l i t y  of a She l l  Clamped on Both Sides 

On approximating buckling by t h e  funct ion 

w =5 w [cos (rta- I)nz -cos (m+ 
1
1) I W  ] c o s  T c o s o t  , (3.30) 

we obtain t h e  expression f o r  x1 i n  t h e  form of 
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Subs t i t u t ing  t h i s  function i n  eq. (2.31, complemented on i t s  left-hand s i d e  
by t h e  i n e r t i a  term 

(where pk i s  t h e  s p e c i f i c  dens i ty  of t h e  material of  t h e  f aces ) ,  and performing 
orthogonalization with respect t o  w, we have 

where 

For t h e  case of a c y l i n d r i c a l  s h e l l  with a s t r u c t u r e  symmetric over i t s  
thickness, see elsewhere (Bibl.2). 

IC. Spherical  S h e l l  Subject t o  External Normal Pressure q 
~ - - _ _  - - _ - - - _. 

Assuming i n  eq.(2.7) t h a t  Rl  = R2 = R, s = 0, p1 = = 1/2 qR, we have 

Inves t iga t ion  of t h e  m i n i "  on t h e  b a s i s  of eq.(4.1) was performed by 
studying t h e  s t a b i l i t y  of a cy l ind r i ca l  s h e l l  f o r  t h e  case of  axial compression. 
We have 

2Eh' d& 2.@h301 at 1--
2h v3(i- va) <n' 

9 = v3-fixi) i2GlJP (i -Va) w Ve7; (4.2) 

Here, h i s  determined by t h e  formula /87 

1 2  




-- 

while, i n  t h e  o ther  cases, 

For t h e  case of a spher ica l  s h e l l  with a s t ruc tu re  symmetric over i t s  
thickness and d t h  a lightweight core, see elsewhere (Bibl.3). 

5. --_=--____~Circular  Conical S h e l l  Exposed&o= Uniform M&lComressj-on 
andUnifo-m--ExternalJom-a1 Pressure__ 

ht ro, rl be the  d is tances  along t h e  cone genera t r ix  t o  t h e  upper and 
lower bases, respect ively;  l e t  CY be t h e  half-angle of aper ture  of t h e  cone; 

Fig. 7 

4, = rl - ro i s  t h e  length  of t h e  s h e l l  along t h e  generatr ix;  r i s  t h e  coordinate 
measured from t h e  ver tex  of t h e  cone; CD i s  t h e  polar  angle;  q i s  t h e  ex terna l  
normal pressure;  N i s  t h e  axial stress applied t o  t h e  lower base; R i s  t h e  
radiu-s of t h e  lower base. The o ther  notat ions are t h e  same as above. 

Let r = r1 exp (TT~x) ,where (Bibl.4) 5 = T T - ’ ~  (ro/rl);therefore ,  0 5 
x 5 1and -03 5 5 S 0. 

w = ~1 (t)COS n’p, x = xi ( r )cos n’p, F = Ft (z)cos ncp . ( 5  -1) 



where 

For a s h e l l  f r e e l y  supported on both s ides ,  t h e  condition 

w1 = [I- (V Ifi) v na1x1 - 0 

will be t h e  only kinematic boundary condition ( a t  x = 0, x = 1). 

I n  inves t iga t ions  on l o c a l  s t a b i l i t y  loss, neglecting t h e  s t a t i c  boundary 
conditions f o r  moderately s h o r t  s h e l l s  introduces no g r e a t  error; hence we 
prescr ibe  t h e  functions wl, xl, F1 i n  t h e  form (m being t h e  number of  half-
waves along t h e  cone element) 

wi = sin maz, X I  =~~c~~~~ sin mnz, F1= sin mnt . (5.5) 

Using eqs.(5.2) - (5.4), we have 

where 

Change-over t o  a c y l i n d r i c a l  s h e l l  begins a t  CY -, 0; then, 5 -, 0, A -t -&/R. 
For a cone closed at t h e  ve r t ex  1" = C2 4 0, eq.(5.6) assumes the  form 
(Figs.7, 8) 



where 
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